久久精品一本到99热免费,亚洲国产日韩一区三区,精品国产综合二区亚洲,性欧美黑人性视频在线

    <sub id="qk7nk"><ol id="qk7nk"></ol></sub>
  1. 
    
  2. <legend id="qk7nk"></legend>

    <legend id="qk7nk"></legend>

    您的位置:首頁>綜合動態(tài)>

    中學知識:拋物線的四種標準方程

    拋物線的標準方程有四種形式,參數p的幾何意義,是焦點到準線的距離。標準方程為:y2=2px(p>0);y2=-2px(p>0);x2=2py(p>0);x2=-2py(p>0)。

    拋物線的四種標準方程

    平面內,到定點與定直線的距離相等的點的軌跡叫做拋物線。其中定點叫拋物線的焦點,定直線叫拋物線的準線。在數學中,拋物線是一個平面曲線,它是鏡像對稱的,并且當定向大致為U形(如果不同的方向,它仍然是拋物線)。

    拋物線是指平面內到一個定點F(焦點)和一條定直線l(準線)距離相等的點的軌跡。它有許多表示方法,例如參數表示,標準方程表示等等。 它在幾何光學和力學中有重要的用處。 拋物線也是圓錐曲線的一種,即圓錐面與平行于某條母線的平面相截而得的曲線。拋物線在合適的坐標變換下,也可看成二次函數圖像。

    感謝閱讀,以上就是拋物線的四種標準方程的相關內容。希翼為大家整理的這篇拋物線的四種標準方程內容能夠解決你的困惑。

    免責聲明:本文由用戶上傳,如有侵權請聯系刪除!